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Abstract: This paper examines the benefits of grating thickness in regards to enhancing EMI attenuation. 
Analysis is performed using the FDTD technique using periodic boundary conditions along with new 
formulations of the CPML absorbing boundary. Furthermore, it is demonstrated that a simple waveguide below 
cutoff approximation provides accurate results for the normal incident plane wave case. 
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1. Introduction 
 

Metalized gratings are often used in shielded enclosure designs to allow ventilation or conduits for conductors 
while attenuating electromagnetic energy. While many designs use waveguide below cutoff principles to insure 
adequate attenuation, cost many times prohibits such robustness. The focus of this paper is to examine the 
effectiveness of gratings, grills, or vent arrays as the thickness of these structures are increased.  
 

2. CPML formulation within the Periodic FDTD 
 
Periodic analysis codes are uniquely suited for problems involving large arrays of apertures which are 
illuminated by plane waves. If one assumes that no near field sources are present, this type of analysis can 
provide good performance metrics for typical air vent or cable pass-through structures. The solution method in 
this work is the periodic split-field FDTD (SF-FDTD) as first introduced by Roden, et al [1],[2] and 
documented later in [3]. 

Proper implementation of the PML absorbing boundary within the split field implementation periodic 
FDTD (SF-FDTD) has been documented previously [3]. In that work, the PML update equation was 
accomplished using a split field approach. A more robust implementation may be accomplished using the 
recently introduced convolution PML (CPML). The advantage of incorporating the CPML within SF-FDTD is 
that the additional PML overhead is transparent so far as the implementation of the split field update 
expressions and significant attenuation of evanescent modes is accomplished. The frequency domain 
expressions for Ampere’s law including CPML are given by  
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In (4), the variable iσ  determines the attenuation rate of propagating waves within the PML, while 

,i iκ α determine the attenuation of evanescent waves within the PML. The basic formulation consists of 
splitting each of these equations (and their E field counterparts) into two parts and introducing an alternate time 
grid such that the primary and alternate grids are staggered in time by ½ time steps. For each of the two time 
grids, the normalized field xP  component update becomes 
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Similar equations are implemented for the remaining field components and these are valid throughout the entire 
computational domain. Subsequently, summation variables are introduced and appended to the  ‘A’ parts of the 
split field equations [4] resulting from (1) through (4) and are incremented at each half time step as 
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Figure 1 Geometry of this study,  infinite array of square apertures. 
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3. Results 

 
 
The basic geometry chosen for this study is given in Figure 1. Shown here is a periodic array of square 

apertures with depth t, which is a variable in the study. For this study, w=25.0 mil and d=400 mil. A plane wave 
illuminates the structure from above at an angle iθ  to the surface normal TM polarization. In addition to FDTD 
simulations, analytic results for the transmission coefficient are computed for the infinitely thin case based on 
well known formulas. These analytic expressions for transmission and reflection are 
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where θ  is the angle of incidence with respect to normal, 0Z  is the impedance of free space, and sZ  is the sheet 
impedance of the infinitely thin screen which is given by Golden’s [5] formula as 
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In (12), d is the center-to-center spacing of the periodic grid, and w is the width of the metal members. 
Furthermore, wave-guide below cutoff theory is used in order to apply (11) to the general case with thickness. 
The combination of (11) with this waveguide attenuation (posed for the lowest order mode) provides an easy to 
use formula for predicting thick surface shielding performance. Figure 2 illustrates the variation of transmission 
coefficient with varying screen thickness as the depth goes from infinitely thin to ½ inch. Analytic results and 
FEM results are also presented here and show good agreement. Figure 3 illustrates the effect of varying the 
incident angle from normal incidence to 60 degrees for TM (to surface) polarization in a principle plane of the 
lattice.  
 

4. Conclusions 
 

Waveguide below cutoff concepts do provide a good approximation of the effect of adding depth to periodic 
lattices of apertures in metallic gratings. As a result, one can confidently use such formula for computing the 
appropriate thickness or depth of such geometries in order to attain a desired EMI attenuation.  

The FDTD technique proved quite useful for analyzing these structures and provided quite fast results. The 
use of the CPML absorbing boundary proved essential to adequately attenuating strong evanescent modes 
which were present for higher angles of incidence. While the problem studied here contained only metallic 
materials, the formulation is general and may be applied to a wide array of problems. 
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Figure 2 Shielding Effectiveness improvement with varying thickness at zero degrees incident. 
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Figure 3 Shielding Effectiveness variation with angle of incidence for 0.5 inch grating. 
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